Ainley, J. (1991). Is there any mathematics in measurement? In Teaching and learning school mathematics: a reader (pp. 69–76). Hodder & Stoughton in association with The Open University. https://contentstore.cla.co.uk//secure/link?id=04852d23-864a-e611-80bd-0cc47a6bddeb
Alfinio Flores, Jeffrey Samson and H. Bahadir Yanik. (2006a). Quotient and Measurement Interpretations of Rational Numbers. Teaching Children Mathematics, 13(1), 34–39. http://www.jstor.org/stable/41198840?Search=yes&resultItemClick=true&searchText=rational&searchText=numbers&searchText=as&searchText=measures&searchUri=%2Faction%2FdoBasicSearch%3Ffilter%3D%26amp%3BQuery%3Drational%2Bnumbers%2Bas%2Bmeasures&refreqid=search%3A5c9d9b7756b310667a8163ee5eb4e8df&seq=3#page_scan_tab_contents
Alfinio Flores, Jeffrey Samson and H. Bahadir Yanik. (2006b). Quotient and Measurement Interpretations of Rational Numbers. Teaching Children Mathematics, 13(1), 34–39. http://www.jstor.org/stable/41198840?Search=yes&resultItemClick=true&searchText=rational&searchText=numbers&searchText=as&searchText=measures&searchUri=%2Faction%2FdoBasicSearch%3Ffilter%3D%26amp%3BQuery%3Drational%2Bnumbers%2Bas%2Bmeasures&refreqid=search%3A5c9d9b7756b310667a8163ee5eb4e8df&seq=3#page_scan_tab_contents
Allen, M. (2014a). Misconceptions in primary science (Second edition). Open University Press. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780335262670&uid=^u
Allen, M. (2014b). Misconceptions in primary science (Second edition). Open University Press. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780335262670&uid=^u
Allen, M. (2014c). Misconceptions in primary science (Second edition). Open University Press. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780335262670&uid=^u
Bianchi, L., & Feasey, R. (2011). Science and technology beyond the classroom boundaries for 7-11 year olds. Open University Press.
Bianchi, L., Feasey, R., & Hesketh, S. (2011a). Science beyond the classroom boundaries for 3-7 year olds. McGraw-Hill. http://site.ebrary.com/lib/roehampton/Doc?id=10863115
Bianchi, L., Feasey, R., & Hesketh, S. (2011b). Science beyond the classroom boundaries for 3-7 year olds. McGraw Hill/Open University Press. http://site.ebrary.com/lib/roehampton/Doc?id=10863115
Bianchi, L., Feasey, R., & Hesketh, S. (2011c). Science beyond the classroom boundaries for 7-11 year olds. McGraw-Hill Open University Press. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780335241347&uid=^u
Briggs, M., & Davis, S. (2008). Creative teaching mathematics in the early years and primary classroom [Electronic resource]. Routledge. https://www.dawsonera.com/guard/protected/dawson.jsp?name=https://dmz-shib-dg-01.dmz.roehampton.ac.uk/idp/shibboleth&dest=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780203826294
Brunton, P., & Thornton, L. (2010a). Science in the early years: building firm foundations from birth to five [Electronic resource]. SAGE. http://sk.sagepub.com/books/science-in-the-early-years
Brunton, P., & Thornton, L. (2010b). Science in the early years: building firm foundations from birth to five [Electronic resource]. SAGE. http://sk.sagepub.com/books/science-in-the-early-years
Brunton, P., & Thornton, L. (2010c). Science in the early years: building firm foundations from birth to five [Electronic resource]. SAGE. https://roe.idm.oclc.org/login?url=http://sk.sagepub.com/books/science-in-the-early-years
Can Kindergartners Do Fractions? (2014). Teaching Children Mathematics, 20(6). https://doi.org/10.5951/teacchilmath.20.6.0354
Cooke, V., & Howard, C. (2014a). Practical ideas for teaching primary science. Critical Publishing Ltd. https://roe.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/roehampton-ebooks/detail.action?docID=1818070
Cooke, V., & Howard, C. (2014b). Practical ideas for teaching primary science. Critical Publishing Ltd. https://roe.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/roehampton-ebooks/detail.action?docID=1818070
Cooke, V., & Howard, C. (2014c). Practical ideas for teaching primary science: Vol. Critical teaching [Electronic resource]. Critical Publishing. https://roe.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/roehampton-ebooks/detail.action?docID=1818070
Cotton, T. (2016a). Understanding and teaching primary mathematics (Third edition). Routledge.
Cotton, T. (2016b). Understanding and teaching primary mathematics (Third edition) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315695525&uid=^u
Cotton, T. (2016c). Understanding and teaching primary mathematics (Third edition). Routledge.
Cotton, T. (2016d). Understanding and teaching primary mathematics (Third edition) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315695525&uid=^u
Cramer, K., Monson, D., Ahrendt, S., Colum, K., Wiley, B., & Wyberg, T. (2015). 5 Indicators of Decimal Understandings. Teaching Children Mathematics, 22(3). https://doi.org/https://roehamptonuniversity-on-worldcat-org.roe.idm.oclc.org/oclc/6001099281
Davies, D. (2011). Teaching science creatively: Vol. Learning to teach in the primary school series. Routledge. https://roe.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/roehampton-ebooks/detail.action?docID=4626145
Devereux, Jane & Open University. (2007). Science for primary and early years: developing subject knowledge: Vol. Developing subject knowledge (2nd ed). SAGE.
Fosnot, C. T., & Dolk, M. L. A. M. (2002). Young mathematicians at work: constructing fractions, decimals, and percents. Heinemann.
Frankland, M. (2017a). Addressing special educational needs and disability in the curriculum: science (Second edition). Routledge. https://roe.idm.oclc.org/login?url=https://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315457857&uid=^u
Frankland, M. (2017b). Addressing special educational needs and disability in the curriculum: science (Second edition). Routledge. https://roe.idm.oclc.org/login?url=https://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315457857&uid=^u
Fyfe, Emily R; (2015). Easy as ABCABC: Abstract Language Facilitates Performance on a Concrete Patterning Task. Child Development, 86(3), 927–936. https://srcd-onlinelibrary-wiley-com.roe.idm.oclc.org/doi/10.1111/cdev.12331
Fyfe, Emily R.. Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, US, efyfe@indiana.edu Matthews, Percival G.. Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI, USAmsel, Eric. Department of Psychology, Weber State University, Ogden, UT, USMcEldoon, Katherine L.. Tennessee Department of Education, Nashville, TN, USMcNeil, Nicole M.. Department of Psychology, University of Notre Dame, Notre Dame, IN, US. (2018). Assessing formal knowledge of math equivalence among algebra and pre-algebra students. Journal of Educational Psychology, 110(1), 87–101.
Gifford, S. (2005a). Teaching mathematics 3-5: developing learning in the foundation stage. Open University Press.
Gifford, S. (2005b). Teaching mathematics 3-5: developing learning in the foundation stage [Electronic resource]. Open University Press. https://roe.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/roehampton-ebooks/detail.action?docID=287879
Hansen, A. (2014). Measurement. In A. Hansen, D. Drews, J. Dudgeon, F. Lawton, & L. Surtees (Eds.), Children’s errors in mathematics (Third edition, pp. 120–154). Learning Matters.
Harlen, W., & Qualter, A. (2014a). The teaching of science in primary schools (6th edition). Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315850962&uid=^u
Harlen, W., & Qualter, A. (2014b). The teaching of science in primary schools (electronic resource) (Sixth edition). Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315850962&uid=^u
Haylock, D. (2014a). Algebraic Reasoning. In Mathematics explained for primary teachers (5th edition, pp. 289–308). SAGE.
Haylock, D. (2014b). Algebraic Reasoning. In Mathematics explained for primary teachers (5th edition, pp. 289–308). SAGE.
Haylock, D. (2014c). Algebraic Reasoning. In Mathematics explained for primary teachers (5th edition, pp. 289–308). SAGE.
Haylock, D. (2014d). Algebraic Reasoning. In Mathematics explained for primary teachers (5th edition, pp. 289–308). SAGE.
Holt Wilson, P., Myers, M., Edgington, C., & Confrey, J. (2012). Fair Shares, Matey, or Walk the Plank. Teaching Children Mathematics, 18(8). https://doi.org/10.5951/teacchilmath.18.8.0482
How Can Students Learn Fraction (De)Composition? (2017). Teaching Children Mathematics, 24(1). https://doi.org/10.5951/teacchilmath.24.1.0030
Howe, A. (2017). Science 5-11: a guide for teachers (3rd ed.). David Fulton.
Howe, A., Collier, C., McMahon, K., Earle, S., & Davies, D. (2017). Science 5-11: a guide for teachers (Third edition). Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203717950&uid=^u
Johnston, J. (2014a). Emergent science: teaching science from birth to 8 [Electronic resource]. Routledge. https://www.dawsonera.com/guard/protected/dawson.jsp?name=https://dmz-shib-dg-01.dmz.roehampton.ac.uk/idp/shibboleth&dest=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9781315815510
Johnston, J. (2014b). Emergent science: teaching science from birth to 8. Routledge, Taylor & Francis Group. https://roe.idm.oclc.org/login?url=https://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9781315815510&uid=^u
Kelly, L., & Stead, D. (2013a). Enhancing primary science: developing effective cross-curricular links [Electronic resource]. Open University Press. https://www.dawsonera.com/guard/protected/dawson.jsp?name=https://dmz-shib-dg-01.dmz.roehampton.ac.uk/idp/shibboleth&dest=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780335247059
Kelly, L., & Stead, D. (2013b). Enhancing primary science: developing effective cross-curricular links. Open University Press. https://roe.idm.oclc.org/login?url=https://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780335247059&uid=^u
Lamon, S. J. (2012a). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed). Routledge.
Lamon, S. J. (2012b). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203803165&uid=^u
Lamon, S. J. (2012c). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed). Routledge.
Lamon, S. J. (2012d). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203803165&uid=^u
Lamon, S. J. (2012e). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed). Routledge.
Lamon, S. J. (2012f). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203803165&uid=^u
Lamon, S. J. (2012g). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed). Routledge.
Lamon, S. J. (2012h). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203803165&uid=^u
Lamon, S. J. (2012i). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed). Routledge.
Lamon, S. J. (2012j). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203803165&uid=^u
Lamon, S. J. (2012k). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed) [Electronic resource]. Routledge. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780203803165&uid=^u
Lamon, S. J. (2012l). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers (3rd ed). Routledge.
Lester, F. K. (2007). Second handbook of research on mathematics teaching and learning: Vol.2. Information Age.
Lewis, R., Gibbons, L., Kazemi, E., & Lind, T. (2015). Unwrapping Students’ Ideas about Fractions. Teaching Children Mathematics, 22(3). https://doi.org/10.5951/teacchilmath.22.3.0158
Ollerton, Mike. (2014). DIFFERENTIATION IN MATHEMATICS CLASSROOMS. Mathematics Teaching., 240, 43–46. http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,athens&db=ehh&AN=96164498&site=eds-live
Pattern-Block Frenzy. (2012a). Teaching Children Mathematics, 19(2). https://doi.org/10.5951/teacchilmath.19.2.0116
Pattern-Block Frenzy. (2012b). Teaching Children Mathematics, 19(2). https://doi.org/10.5951/teacchilmath.19.2.0116
Peacock, G., Sharp, J., Johnsey, R., & Wright, D. (2014). Materials. In Primary science: knowledge and understanding (Seventh edition, pp. 88–105). Sage Publications Ltd. https://contentstore.cla.co.uk/secure/link?id=de882d57-8b4a-e611-80bd-0cc47a6bddeb
Poon, R., & Lewis, P. (2015). Unpacking the Division Interpretation of a Fraction. Teaching Children Mathematics, 22(3). https://doi.org/10.5951/teacchilmath.22.3.0178
Rutledge, G. N. (2010). Primary science: teaching the tricky bits (electronic resource). McGraw-Hill Open University Press. https://roe.idm.oclc.org/login?url=http://www.vlebooks.com/vleweb/product/openreader?id=Roehampton&isbn=9780335240395&uid=^u
Rutledge, N. (2010). Primary science: teaching the tricky bits. Open University Press/McGraw Hill.
Siegler, R. S., & Lortie-Forgues, H. (2017). Hard Lessons: Why Rational Number Arithmetic Is So Difficult for So Many People. Current Directions in Psychological Science, 26(4), 346–351. https://doi.org/10.1177/0963721417700129
Toy Stories: Modeling Rates. (2015). Teaching Children Mathematics, 22(2). https://doi.org/10.5951/teacchilmath.22.2.0076
Turner, J. (2011). It’s not fair - or is it? : a guide to developing children’s ideas through primary science enquiry. Millgate House Publications.
Tzur, R., & Hunt, J. (2015). Iteration: Unit Fraction Knowledge and the French Fry Tasks. Teaching Children Mathematics, 22(3). https://doi.org/10.5951/teacchilmath.22.3.0148
Unpacking Referent Units in Fraction Operations. (2015). Teaching Children Mathematics, 22(4). https://doi.org/10.5951/teacchilmath.22.4.0240
Using Representations of Fraction Multiplication. (2016). Teaching Children Mathematics, 22(6). https://doi.org/10.5951/teacchilmath.22.6.0366
Zhang, X., Clements, M., & Ellerton, N. (2015). Engaging Students with Multiple Models of Fractions. Teaching Children Mathematics, 22(3). https://doi.org/10.5951/teacchilmath.22.3.0138